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Abstract
We use Monte Carlo methods to study the knot probability of lattice polygons
on the cubic lattice in the presence of an external force f . The force is coupled
to the span of the polygons along a lattice direction, say the z-direction. If
the force is negative polygons are squeezed (the compressive regime), while
positive forces tend to stretch the polygons along the z-direction (the tensile
regime). For sufficiently large positive forces we verify that the Pincus scaling
law in the force–extension curve holds. At a fixed number of edges n the
knot probability is a decreasing function of the force. For a fixed force the
knot probability approaches unity as 1 − exp(−α0(f )n + o(n)), where α0(f )

is positive and a decreasing function of f . We also examine the average of the
absolute value of the writhe and we verify the square root growth law (known
for f = 0) for all values of f .

PACS numbers: 02.10.Kn, 36.20.Ey, 05.70.Jk, 87.15.Aa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is considerable recent interest in the response of polymers and filaments to an applied
force. Experiments are now possible, for instance using atomic force microscopy [2, 3, 8] or
optical tweezers [1, 19], where an individual polymer can be elongated and the stress–strain
curve investigated [2].

In this paper the knot probability of a ring polymer subjected to a compressive or
elongational force is examined. The knot type of the polymer is not fixed; this corresponds
to a situation where an enzyme (for example topoisomerase acting on DNA) can allow strand
passage. This establishes at a fixed force an equilibrium distribution of knotted conformations.
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We model ring polymers by cubic lattice polygons. The cubic lattice Z
3 consists of integer

points in R
3, and of edges which are unit length line segments between pairs of vertices which

are unit distance apart in R
3. A polygon is an embedding of a simple closed curve in Z

3.
We shall write pn for the number of (undirected, unrooted) polygons with n edges, so that
p4 = 3, p6 = 22, etc. For a given polygon ω with vertices ω1, ω2, . . . the span along the
z-direction (Z-span) is defined as

s(ω) = max
ij

|z(ωi) − z(ωj )|, (1)

where z(ωi) is the third coordinate of the ith vertex ωi of the polygon.
Let pn(s) be the number of n-edge polygons with Z-span s. In the constant force ensemble

(or stress ensemble) the equilibrium properties of the system are described by the partition
function

Zn(f̃ ) =
∑

s

pn(s) ef̃ s/kBT (2)

where f̃ is the applied force. We consider forces in units of inverse length by defining
f = f̃ /kBT . If f = 0 we have Zn(0) = pn. For compressive forces (f < 0) the polygons
are squeezed along the z-direction, while for f > 0 (tensile forces) polygons elongated along
the z-direction are more favorable.

It is straightforward to prove, using concatenation arguments and subadditivity, that the
limiting free energy

lim
n→∞ n−1 log Zn(f ) ≡ F(f ) (3)

exists. For f = 0 it is known that sufficiently long polygons are almost surely knotted
[17, 18]. This result is based on a pattern theorem for polygons.

A pattern theorem has recently been proved [11] for polygons subject to a sufficiently
large tensile force which implies that the probability Pn(f ) that a polygon with n edges, subject
to a force f, is knotted behaves as

Pn(f ) = 1 − e−α0(f )n+o(n) (4)

for f sufficiently large and positive, as well as for f = 0. At the moment we do not know
of any rigorous results about the knot probability in either the compressive or weak tensile
regimes.

We also consider a model where the compressive force is applied to two fixed vertices of
the n-edge polygon, n/2 edges apart. The appropriate partition function is then

Z̄n(f ) =
∑

d

pn(d) ef̃ d/kBT , (5)

where the force is now coupled to the projection d on the z-coordinate of the line between two
fixed vertices of the polygon, n/2 edges apart. One can imagine this model being relevant to
an AFM experiment, where the size L of the AFM tip is small relative to the persistence length
Lp of the ring polymer itself. If L � Lp the compressive regime can be well described by
the partition function given in (2).

We will refer to the models described by (2) and (5) as model 1 and model 2 respectively.

2. Numerical results

Lattice polygons with fixed number of vertices can be sampled efficiently by Monte Carlo
methods based on the pivot algorithm for polygons [13]. Although the pivot algorithm works
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Figure 1. Average span 〈s〉 along the force direction as a function of the force f for different n
values.

well for f = 0, at large values of f it may suffer from quasi-ergodic problems which would
make the sampling less efficient. We overcome this difficulty by using a multiple Markov
chain (MMC) implementation of the above algorithm [5, 6]. The idea is to run a set of Markov
chains in parallel (at a fixed set of f values) and swap configurations between the individual
Markov chains. For details see Tesi et al [22] and Orlandini et al [15].

We carried out simulations by considering up to 40 Markov chains in parallel and by
sampling configurations every m attempted pivot moves. The value of m which we used
increased with the size n of the polygon and ranged from 2000 (for n = 500) up to 12 000
(for n = 3000). The data were then analyzed by using standard techniques to estimate the
autocorrelation times and the statistical confidence intervals [14]. In addition, we have used
the multi-histogram reweighting technique to estimate the density of states pn(s) and from
that the partition function Zn(f ) [20]. Given an estimate of Zn(f ) all the interesting averages
are easily obtained.

2.1. Stretching regimes

Since the force is applied along the z-direction the order parameter of the model is the average
extension along the stretching force direction i.e. the average Z-span

〈s〉 = ∂

∂f
log Zn(f ). (6)

Figure 1 shows the f dependence of the average value of s, for different values of n. For
fixed n, 〈s〉 is a monotonic non-decreasing function of the applied force. For tensile forces
(f > 0) the polygons tend to be stretched and the force–extension curve shown in figure 1
can be explained according to the Pincus theory of stretched polymers in good solvents
[4, 16]. This theory identifies two characteristic length scales in the problem: the average
radius of gyration R ∝ nν where ν is the metric exponent, and the tensile screening length
ξ = 1/f . The cases of weak and strong forces correspond, respectively, to the conditions

3
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R/ξ � 1 and R/ξ � 1. The scaling assumption consists in assuming that, for arbitrary
positive f, the extension along the stretching direction 〈s〉 can be written as

〈s〉 = R�(R/ξ), (7)

where �(x) is a dimensionless scaling function.
According to Pincus [16] one should then distinguish three stretching regimes.

• Weak force regime. For small forces one should expect a linear increase in the extension
s as f increases (Hooke’s law). Thus, �(x → 0) ∼ x and

〈s〉 ∝ R2f = n2νf. (8)

Note that for chains with no excluded volume interaction (ideal chains) ν = 1/2 and 〈s〉
is linear in n at low forces. For self-avoiding walks ν ≈ 0.588 and the average extension
is a nonlinear function of n. In the ideal case, the force is transmitted along the backbone
while for self-avoiding walks the transmission is also through contacts between pairs of
monomers due to excluded volume interactions. Note that scaling (8) implies

f = K〈s〉, (9)

i.e. the force–extension curve obeys the Hooke law with elastic constant K that decreases
as n−2ν .

• Intermediate force regime. In the strongly stretched regime, which arises for intermediate
forces, the value of 〈s〉 can be obtained according to a ‘blob’ interpretation in which the
chain can be broken into a sequence of aligned (along the force direction) tensile blobs
whose size is ξ ∼ f −1 = (f̃ /kBT )−1. The blobs do not interact with one another and
the monomers contained in each blob behave as unperturbed self-avoiding walks. That is
ξ ∼ nν

b, where nb is the number of monomers in each blob. The linear extension of the
chain is then given by 〈s〉 ∼ ξn/nb ∼ nf 1/ν−1 ∼ nf 2/3, where we have used the Flory
value of the exponent ν = 3/5. This is the so-called Pincus regime. In this case

f = K〈s〉3/2 (10)

with K ∼ n−3/2. It is important to note that this argument is valid only in the limit
n � ξ 1/ν � 1, which may not be satisfied for a stiff polymer or a flexible one with
small n.

• Strong force regime. For extremely large forces excluded volume effects become irrelevant
since the bonds of the polymer are fully aligned along the stretching direction and
monomers do not interact with one another. In this case 〈s〉 becomes comparable to
n and the force–extension relation for the chain is dominated by the bonding potential
between consecutive monomers. As a result, the force–extension curve would be model
dependent.

Figure 2 shows 〈s〉/nν versus f nν where ν = νsaw � 0.588 for positive forces. As n
increases the data collapse onto a single curve. For small positive values of f the behavior
is linear as suggested by the dashed straight line. For larger values of f the curves collapse
by plotting 〈s〉/n as a function of f (see figure 3). The dashed curve represents the best fit
of the data for n = 3000 to the function Anc. The estimate c ≈ 0.64 is quite close to the
value 2/3 characterizing the Pincus regime. Our values of f are not large enough to see the
non-universal regime. Note that longer polygons reach the scaling regime at weaker forces.
Indeed, the rigidity of a long chain is smaller than that of short chains and this makes longer
polygons more easily deformed.

In the Pincus regime the argument used by Pincus is that the blobs are not internally
deformed by the force, but the sequence of blobs is elongated along the direction of the force.
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Figure 2. Same data as in the previous figure but now the average span along z is divided by nν

and the force is multiplied by nν with ν = 0.588 being the metric exponent of self-avoiding walks
in d = 3. The data are for positive forces. The dashed straight line indicates the linear behavior
for small values of f .
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Figure 3. Same data of the previous figure but now the span along z is divided by n. The dashed
curve corresponds to the fit An0.64 for the n = 3000 case. This gives the Pincus regime.

This implies that the blobs behave more or less independently in this regime. Since each blob
can contain a knot with positive probability this independence implies that an infinitely long
chain will be knotted with probability 1 and the exponential constant α0(f ) should be roughly
independent of f in this regime [7].

In figure 4 (inset) we plot the component of the root mean square radius of gyration along
the force direction, 〈Rf 〉, as a function f . Different curves correspond to different values of
n. If the data are scaled by following (8), they all collapse nicely onto a single curve for all the
positive forces considered (see the main plot of figure 4). This is expected since in the tensile
regime the component 〈Rf 〉 would be the dominant one. If we consider instead the total root
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Figure 4. The raw data 〈Rf 〉 versus f shown in the inset are rescaled in the main plot as 〈Rf 〉/nν

versus f nν to show that the Pincus scaling law holds also for the projection of the mean square
root radius of gyration on the direction of the force.
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Figure 5. Comparison between the variable d conjugate to the force in model 2 and the average
span along the direction of the force. The case displayed corresponds to polygons with n = 1000
steps.

mean square radius of gyration the collapse is not as good as for its component along the force
direction.

While the metric properties of model 1 and model 2 are expected to be similar in the tensile
regime they differ in the compressive regime. Indeed, in model 2 negative forces would bring
the two opposite (along the backbone) edges close together along the z-coordinate leaving the
span along the force direction close to the natural span i.e. the span for f = 0 (see figure 5).
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Figure 6. Component of the mean square radius of gyration along the force direction for the two
different models and for n = 500. Note that for model 2 this quantity is almost constant (and equal
to its value for f = 0) for negative values of f (squeezing regime), while for f sufficiently high
(stretching regime) the two models display the same behavior as expected.

A further indication of the difference between the two models in the compressive regime
is given by comparing the components along the force direction of the mean root squared
radius of gyration (see figure 6) in the two cases: in model 1 this quantity is still decreasing
as the force becomes more and more negative while it remains constant for model 2.

2.2. Knot probability

Knots in polygons can be detected by computing the value of the Alexander polynomial �(t)

at t = −1 (see, for example, the work of Volodogskii et al [23] and Janse van Rensburg [10]).
If |�(−1)| �= 1 then the polygon is a knot. Otherwise we assume that it is the unknot. In fact
the Alexander polynomial is not a perfect invariant, and is unable to distinguish every knot
type. For instance, the prime knot 811 has the same Alexander polynomial as the composite
knot 31#61, and 815 has the same Alexander polynomial as 31#72. To help to distinguish pairs
of knots we have also computed |�(−2)|. In figures 7 and 8, we compare the data analyzed
using time series methods with the curve estimated by the multi-histogram method. The
multi-histogram seems to work quite well and has the advantage of giving continuous curves
in f .

In figure 9, we show the knot probability as a function of f for different values of n.
For each fixed n the knot probability decreases rapidly as the tensile force (f positive)

increases while it increases (but slowly) in the compressive regime. For a fixed value of f we
confirm the exponential decay of the unknotting probability i.e.

P 0
n (f ) = e−α0(f )n+o(n). (11)

This result is known rigorously for f = 0 [18] and also for f sufficiently large and positive
[11]. However, there are no corresponding rigorous results for f < 0 or for f positive and
small.

In figure 10, the unknot probability as a function of n is reported for some values of the
force. A log–linear fit of such curves gives an estimate of α0(f ) for different values of f .
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Figure 7. Knot probability as a function of the force f for n = 500: the circles correspond to the
direct estimates coming from the data (the errors are obtained by performing the time correlation
function estimate), while the continuous curve corresponds to the multi-histogram method. The
inset shows an enlargement of the main plot for f � 1.
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Figure 8. Knot probability as a function of the force f for n = 3000: the circles correspond
to the direct estimates coming from the data (the errors are obtained by performing the usual
time correlation function estimate), while the continuous curve corresponds to the multi-histogram
method. The inset shows an enlargement of the main plot for f � 1.

In figure 11, these estimates are plotted as a function of f . We note that α0(f ) is small and
decreases as f increases. The values are much smaller for f positive than for f negative.
For f = 0 the estimate agrees within the error bars with the estimate of Janse van Rensburg
[10]. For f greater than 1, α0(f ) is roughly constant, though not zero. This is consistent with
the expectation that in the Pincus regime the polymer can be described by non-interacting
blobs [7].
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Figure 9. Knot probability as a function of the force f for different n values.
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Figure 10. Log–linear plots of the unknot probability as a function of n. Different curves
correspond to different values of the force (see labels). By fitting each curve with the exponential
behavior of equation (11) we get estimates of α0(f ). The inset shows an enlargement around 1 for
the curve f = 1.0.

When we compare the knot probabilities for model 1 and model 2 (see figure 12) we note
that they are very similar for f � 0 while for f < 0 the knot probability for model 1 is larger
than for model 2. This is related to the fact that, for model 1, in the compressive regime the
polygon is effectively confined to a slab leading to a larger knot probability [21]. Moreover,
since in model 2 the polygons are not globally compressed the knot probability is not seriously
affected and remains roughly constant for all the negative values of f considered.

This feature holds for all the values of n considered here (see figure 13) and gives rise to
values of α0(f ) that, for model 2, are roughly independent of the strength of the compressive
force.
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Figure 11. Estimates of the unknotting exponent as a function of the force. The inset shows an
enlargement of the region f � 1.
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Figure 12. Comparing the knot probability as a function of f of the two models. The data
correspond to polygons of n = 1000 steps.

Given that a polygon subjected to a compressive or tensile force is knotted it is interesting
to investigate the relative amounts of different knot types (i.e. the knot spectrum as a function
of f ). In order to estimate the knot spectrum we have sampled ∼5 × 105 polygons with
n = 6000 steps for some values of the force. The knot type of each configuration has been
detected by computing the HOMFLY polynomial. The relative frequencies of the first simple
knots are reported in table 1.

It is clear that as the tensile force increases the proportion of complex knots decreases
and simple knots dominate. For compressive forces the proportion of trefoils observed was
relatively constant, and roughly equal to the proportion when no force is applied.
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Figure 13. Knot probability as a function of f for model 2. The three curves correspond to
three different values of n. Note that in the compressive regime the knot probability is almost
independent of f .

Table 1. Percentage of the fraction of the occurrence of the simplest knot types (columns 4–9)
within the subset of knotted polygons (third column) with n = 6000.

No. of No. of
configurations knots 31 41 51 52 31#31 Others

−2.0 315 760 12 811 92.60 ± 0.23 4.39 ± 0.18 0.43 ± 0.06 0.60 ± 0.07 1.64 ± 0.11 0.34 ± 0.03
−1.0 315 548 10 647 92.76 ± 0.25 4.48 ± 0.20 0.35 ± 0.06 0.70 ± 0.08 1.16 ± 0.10 0.55 ± 0.04
0.0 315 541 9 887 92.66 ± 0.26 4.56 ± 0.21 0.55 ± 0.07 0.57 ± 0.08 1.37 ± 0.12 0.29 ± 0.04
0.1 315 866 7 163 94.44 ± 0.27 3.56 ± 0.22 0.19 ± 0.05 0.47 ± 0.08 1.12 ± 0.12 0.20 ± 0.05
0.5 361 414 898 98.66 ± 0.38 1.34 ± 0.39 0.00 0.00 0.00 0.00
1.0 257 258 78 100.0 0.00 0.00 0.00 0.00 0.00

In addition to the topological entanglement complexity we have checked how the
geometrical entanglement complexity can be affected by a force. One useful measure of
geometrical entanglement complexity is the writhe. Consider a simple closed curve and
project this onto a plane in direction x̂. The projected curve will have a set of (transverse)
crossings which we label i = 1, 2, . . . , where the ith crossing has crossing number σi = ±1.
Form the sum of these crossing numbers and average over all projection directions, x̂. This
is the writhe, Wr, of the curve. For lattice polygons this can be conveniently computed using
a result of Lacher and Sumners [12]. Because the writhe can be positive or negative we
concentrate on the absolute value |Wr|. For polygons in the absence of a force it is known
rigorously [9] that 〈|Wr|〉 � A

√
n for some positive constant A and for n large, where the

angular brackets denote expectation for a fixed value of n. In figure 14 we show the average
of |Wr| as a function of f for model 1 (see the inset). The data collapse onto a single curve if
〈|Wr|〉 is rescaled by

√
n (see the main plot in figure 14).

For f = 0 and for f sufficiently large and positive a pattern theorem together with a coin
tossing argument shows that

〈|Wr|〉 � A
√

n (12)

for some A > 0 and for n sufficiently large [11]. Our numerical results suggest that this bound
might be best possible and that it applies for all values of f .

11
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Figure 14. The average of the absolute value of the writhe 〈|Wr|〉 versus f is shown in the inset
for different values of n. In the main figure, these data have been rescaled by n1/2 to show that the
same power law behavior holds for all the values of f considered.

3. Summary and discussion

We have used Monte Carlo methods to investigate the properties of lattice polygons in three
dimensions under the influence of a tensile and a compressive force. The data for the span
of the polygons in the direction of the applied force show clear evidence of different scaling
behavior in the weakly and strongly stretched regimes, consistent with the scaling theory of
Pincus.

We have examined the knot probability as a function of force and find that the probability
of being knotted goes to unity exponentially rapidly as the size of the polygon goes to infinity,
for all forces studied. This agrees with rigorous results both for zero force and for very strong
tensile forces, though there are no corresponding rigorous results for compressive forces or for
weak tensile forces. We have also examined the distribution of knot types at different forces.
The knot distribution is not sensitive to the force in the compressive regime but more complex
knots become rarer at large tensile forces.

We have also examined the writhe, as a measure of geometric entanglement complexity
and we find that the mean of the absolute value of the writhe scales like

√
n at all forces

examined.
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